‘Architecture has been bound and shaped by changing code and constraints throughout its
history! Ingeborg M Rocker traces, in turn, first the development of calculus into
computation and, then, the introduction of computers into architecture. In so doing, she asks
what will be the potential effects of computation on the recoding of architecture.




Brandon Williams/Studio Rocker, Expression of Code, 2004
When code matters previously unseen structures begin to emerge. The initiated code may be expressed in different variations ranging from straight walls to
twisting columns. At this point performance-based generative systems could, and should, have been applied.




‘When God calculates and exercises his thought, the world is
created.’

Leibniz,1677

Today, when architects calculate and exercise their thoughts,
everything turns into algorithms! Computation,’ the writing
and rewriting of code through simple rules, plays an ever-
increasing role in architecture.

This article explores the role of computation in the
discourse and praxis of architecture, and addresses the central
question of when code matters: when it gains importance in
architecture, and when it, literally, materialises. It looks at
historical computational models and concepts — research
independent of traditional mathematics and the computer -
and hopes to contribute to a critical assessment of
architecture based on code.

From Traditional Mathematics to Computation
With the introduction of calculus® in the late 17th century,

abstract rules became increasingly successful in describing
and explaining natural phenomena. An abstract mathematical
framework then developed from which scientific conclusions
could be drawn without direct reference to physical reality.
Eventually, physical phenomena became reproducible.
Calculus could be applied to a broad range of scientific
problems as long they were describable using mathematical
equations. Nevertheless, many problems - in particular those
of complexity - remained unaddressed.

In the early 1980s, the mathematician Stephen Wolfram
began to explore problems of complexity in computer
experiments based on cellular automata,’ and 20 years on his
A New Kind of Science® hoped to initiate a further transformation
of the sciences — comparable to that which resulted from the
introduction of calculus - this time based on computation.

Wolfram criticised the traditional sciences for relying
mainly on mathematical formalism and predictions that often
proved incapable of anticipating the complex behaviour of a
system. His research suggested that computation, rather than
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Here, simple rules generate complexity. Images from Stephen Wolfram, A New Kind of Science, Wolfram Media (Champaign, IL), 2002.
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mathematics, was the proper means of realising® complex
natural and artificial processes. Counter to the prevailing
belief that complexity is either the product of complex
processes or complex formal arrangements, Wolfram
suggested that simple rules can produce great complexities. In
computation — rather than traditional mathematics - simple
rules were sufficient to generate, approximate and explain
complex phenomena:

‘There are many systems in nature that show highly
complex behavior. But there are also many systems, which
rather show simple behavior — most often either complete
uniformity, or repetition. ... Programs are very much the
same: some show highly complex behavior, while others show
rather only simple behavior. Traditional intuition might have
made one assume that there must be a direct correspondence
between the complexity of observed behavior and the
complexity of underlying rules. But one of [my]| central
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Katharine Ives/Studio Rocker,
Cellular automata, 2004
Simple rules generate two- and
three-dimensional complexity.

discoveries ... is that in fact there is not. For even programs
with some of the very simplest possible rules yield highly
complex behavior.®

Using computer experiments, Wolfram not only explored
complex phenomena, but also their self-organisation over
time. Such phenomena and their behaviours could not be
anticipated prior to their computation. Only by successive,
step-by-step computations is the system of complexities
realised and thus becomes realisable. Consequently, only
actual computational experiments — rather than a priori
determined models of classical mathematics - are sufficient to
capture both complex phenomena and their self-organisation.

Wolfram calls his computational methods ‘a new kind of
science’, suggesting a dramatic shift in the sciences away
from the mathematical to the computational. Computation
will, as Wolfram expects, change our intuition regarding
simplicity and complexity.
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Universal Machines

Wolfram’s research in the field of computation builds on
earlier models such as Alan Turing’s Machine (1936) and
Aristid Lindenmayer’s L-systems (1968). The main features of
such models are explained below, as they are increasingly
gaining relevance in contemporary discussions on
algorithmic architecture.

The Turing Dimension’

In 1936, the model for the Turing Machine, developed by
English mathematician Alan Turing, laid the theoretical
foundation for computing.® Turing did not envision his
machine as a practical computing technology, but rather as a
thought experiment that could provide - independent of the
formalism of traditional mathematics — a precise definition
of a mechanical procedure - an algorithm.” In principle, the
machine could be physically assembled out of a few
components: a table of contents that held the rules for its
operations, a reading and writing head that operated along
the lines of those rules, writing Os or 1s — the code - on a
presumably infinitely long tape. The moving head followed
three modes of operation: writing, scanning, erasing.

Though basic, this design was sufficient for Turing to prove
that a certain set of mathematical problems were
fundamentally noncomputable. Nevertheless, his machine,
based on a finite set of rules and symbols, was able to
compute every problem outside of this set. Turing
consequently considered his machine universal in the sense
that it could simulate all other (calculable) machines. It had
the unprecedented ability to emulate divergent and
multivalent processes.

Inspired partly by the Turing Machine model, in the 1940s
John von Neumann, a member of the Manhattan Project
Team, began work on self-replicating systems at the Los
Alamos National Laboratory.'

‘Von Neumann’s initial design was founded upon the
notion of one robot building another robot. This design is
known as the kinematic model. As he developed this design,
von Neumann came to realise the great difficulty of building a
self-replicating robot, and of the great cost in providing the
robot with a “sea of parts” from which to build its replicant.

At the suggestion of his colleague Stanislaw Ulam, who at
the time was studying the growth of crystals using simple
two-dimensional lattice networks as his abstract models, von
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An example machine: The following ‘table of behaviour’ completely defines a
machine with the character of an adding machine. Started with the ‘scanner”
somewhere to the left of two groups of 1's, separated by a single blank space, it will
add the two groups, and stop. Thus, it will transform
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‘The task of the machine is to fill in the blank space, and to erase the last '1°, It will
therefore suffice to provide the machine with four configurations. In the first it
moves along the blank tape looking for the first group of '1's. When it moves into the
first group, it goes into the second configuration. The blank separator sends it into
the third configuration, in which it moves along the second group until it encounters
another blank, which acts as the signal to turn back, and to enter the fourth and final
configuration in which it erases the last ‘1" and marks time for ever.

Alan Turing, Turing Machine, 1936
The Turing Machine consists of a
head reading and writing on a tape
according to a set of rules. The
operation of the machine depends
on the rules provided - and thus
changes as the rules change. It is for
this reason that the machine can
emulate the operation of various
machines. Images from Andrew
Hodges, Alan Turing: The Enigma,
Simon and Schuster (New York),
1983, pp 98-9.
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John von Neumann, Universal
Copier and Constructor, 1940s
Von Neumann’s hypothetical
machine for self-replication proved
that theoretically a cellular
automaton consisting of orthogonal
cells could make endless copies of
itself. Images from John von
Neumann, Essays on Cellular
Automata, ed Arthur W Burks,
University of lllinois Press (Urbana,
IL), 1970, pp 37, 41.

20



John Conway, Game of Life, 1970
The image shows Kevin Lindsey’s
implementation of Conway’s Game
of Life using JavaScript and SVG.
The rules (algorithms) of the game
are very simple: if a black cell has
two or three black neighbours, it
stays black; if a white cell has three
black neighbours, it becomes black.
In all other cases, the cell stays or
becomes white.

Neumann developed the first two-dimensional self-replicating
automaton, called the ‘Universal Copier and Constructor’
(UCC), which at once seemed to reference and at the same
time extend Turing’s Machine. Here, the process of self-
replication was described through simple rules: ‘The result of
the construction is a copy of the universal constructor
together with an input tape which contains its own
description, which then can go on to construct a copy of
itself, together with a copy of its own description, and so on
indefinitely.’"

In the open system of the UCC, the machines operated
upon one another, constantly modifying each other’s
configurations (code) and operations (rules): ‘The machines
were made sustainable by modifying themselves within the
inter-textual context of other Universal Turing Machines."

The system’s most important function was the self-
replication of its process, which resulted in a successive
iteration of each system-cell’s state, manifesting itself in
evolving and dissolving patterns. Patterns became the visual
indicator of an otherwise invisible algorithmic operation. The
interactions of the different machines thus opened up a new
dimension, the Turing Dimension. This differs from the
spatial dimensions commonly used in architecture as it is an
operational dimension, where one programmatic dimension
is linked with another. Small local changes of the Turing
Dimension may resonate in global changes to the entire system.

In 1970, another type of cellular automaton was
popularised as the Game of Life through an article in Scientific
American.'* The two-state, two-dimensional cellular automaton
developed by the British mathematician John Conway
operated according to carefully chosen rules.' It consisted of
two-dimensional fields of cells, with the state of each system-
cell determined through the state of its neighbours. All cells
are directly or indirectly related to each other, rendering
visible, via changes in colour, the process of computation. The
player-less game was solely determined by its initial state
(code) and rules (algorithms). Similar to the Universal Turing
Machine, the game computed anything that was computable
algorithmically. Despite its simplicity, the system achieved an
impressive diversity of behaviour, fluctuating between
apparent randomness and order. The changing patterns

directly reflected how the machine’s operation writes and
rewrites its code over time. Thus with Conway’s Game of Life,
a new field of research on cellular automata was born."®

L-systems
Cellular automata were tested across the sciences. In 1968, the
theoretical biologist and botanist Aristid Lindenmayer devised
- based on Chomsky’s grammars - L-systems for modelling
the growth of plants.'” L-systems consist of four elements: a
starting point, a set of rules or syntax, constants and variables.
Diversity can be achieved by specifying varying starting points
and different growth times." L-systems grow by writing and
rewriting the code, and expression of the code depends on the
graphical command selected. They are still used to model
plant systems, and to explore the capabilities of computation.
Regardless of which of the models of computation
described above is applied, anything that surfaces on the
screen is visualised and materialised by one and the same: the
digital medium, the alteration of Os and 1s.

Code in Architecture

Turning the focus of this discussion on computation to
architecture, and to the question of when code matters in
architecture, it is necessary to look at the role of codes in the
past and how they have changed since the introduction of the
digital medium in architecture. The use of code has a long
tradition dating back to the Latin term codex that refers to
documents formed originally from wooden tablets. The
Romans used such documents to distribute a system of
principles and rules throughout their empire. In architecture,
systems and rules have dominated, and still dominate, all
stages of architectural production, in the form of drawing
and design conventions. Throughout its history, architecture
has been bound and shaped by changing codes and
constraints, and neither architecture nor its media (from
pencil drawings to physical models, computer renderings to
the built projects) will ever be free of codes. Architecture is,
and always has been, coded.

The arrival of computers extended understanding of code
in architecture. Code was now understood as a set of
instructions written in a programming language. It stood for
‘source code’, a series of statements written in some human-
readable computer programming language, or ‘machine code’,
instruction patterns of bits (0s and 1s) corresponding to
different machine commands.

Writing code, writing a set of instructions, with the aim of
generating architecture, forced the architect of the past to
formalise both the design process and the design. In contrast
to many scientific procedures, which could quite easily be
expressed through mathematical equations, the often
intuitive and even unconscious use of design rules could not.
Perhaps it was for this reason that previously many
algorithms were invented and implemented in planning,
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Algorithm Plants

Algorithm House Algorithm Garage

Aristid Lindenmayer, L-system generating algorithmic plants, 1968

Top: Lindenmayer studied mathematical models of cellular interactions in development and their simple and branching elements. Images from: Aristid
Lindenmayer, ‘Mathematical models of cellular interactions in development: I. Filaments with one-sided inputs’, Journal for Theoretical Biology, Vol 18, 1968, figs
1 and 2 (p 286), figs 4 and 5 (p 310), and figs 6 and 7 (p 312).

Allen Bernholtz and Edward Bierstone, Algorithmic de- and recomposition of design problem, 1967

Above: Bernholtz, of Harvard University, and Bierstone, of the University of Toronto, adopted Christopher Alexander’s and Marvin L Manheimer’s computer
program HIDECS3 (1963) for hierarchical de- and recomposition to first decompose a complex design problem into its sub-problems and then to recompose a
solution. The marked area addresses the design of the garage for which 31 out of 72 possible ‘misfit factors’ were held characteristic and needed to be
excluded in order to arrive at the most appropriate design. Images from Martin Krampen and Peter Seitz (eds), Design and Planning 2: Computers in Design
and Communication, Hastings House, (New York), 1967, pp 47, 51.
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rather than in architectural design. An exception to this was
Christopher Alexander’s HIDECS3 (1963), a program that
decomposed algorithmically complex design tasks into simple
sub-problems in order to then recompose them to the ‘fittest
design’. However, in the end Alexander’s algorithms served
only to force architectural design into an overly structured
rational corset.

The Computational Turn

Regardless of the absurdity of the planning mania of the past,
architects are now once again devoted to code, this time in the
form of scripting algorithms. While previously architects were
obsessed with the reduction of complexity through algorithms,
today they are invested in exploring complexities based on the
generative power of algorithms and computation.

We are now witnessing a ‘computational turn’ - a timely
turn that countermands the reduction of architectural praxis to
the mindless perfection of modelling and rendering techniques.

For many of the architects featured in this issue, the
prepackaged design environments with their inscribed
limitations - regardless of all the rhetoric associated with
them - never really addressed the genuine operations of the
digital medium: ‘The dominant mode of utilizing computers
in architecture today is that of computerization.”™

Most architects now use computers and interactive
software programs as exploratory tools. All their work is
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informed by, and thus dependent on the software they are
using, which inscribes its logic, perhaps even unnoticed, onto
their everyday routines. Such users of software packages have
little or no knowledge of the algorithms powering the
programs they employ. Most of the interactivity is reduced to
a manipulation of displayed forms on the screen, neglecting
the underlying mathematical calculations behind them. All of
this — even though implemented on computers - has little to
do with the logics of computation.

For architects and artists like Karl Chu, Kostas Terzidis,
George Liaropoulos-Legendre, Mike Silver and CEB Reas,
scripting is the means to develop their own design tools and
environments. According to Kostas Terzidis: ‘By using
scripting languages designers can ... transcend the factory set
limitations of current 3-D software. Algorithmic design does
not eradicate differences but incorporates both computational
complexity and creative use of computers.’

In writing algorithms, design intentions or parameters
become encoded. Terzidis and Chu base most of their
explorations on simple, clearly defined rules capable of
computing a priori indeterminable complexities. As such,
alternative modes of architectural production are developed:
‘Unlikely computerization and digitization, the extraction of
algorithmic processes is an act of high-level abstraction. ...
Algorithmic structures represent abstract patterns that are
not necessarily associated with experience or perception. ... In

Brandon Williams/Studio Rocker, Recursions, 2004

Recursive procedures that repeat indefinitely are reading and writing code
according to preset rules: line by line, generation by generation. Hereby, each
generation impacts the next generation and consequently all following ones.
Patterns of code appear and disappear.
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Brandon Williams/Studio Rocker, 3-D Game of Life, 2004

Cellular automata and the Game of Life became the architect’s basis for experimentation. The moment a cell turns active, the project code is realised, and thus

becomes realisable.

this sense algorithmic processes become a vehicle for
exploration that extends beyond the limits of perception.”'

The computer is no longer used as a tool for
representation, but as a medium to conduct computations.
Architecture emerges as a trace of algorithmic operations.
Surprisingly enough, algorithms - deterministic in their form
and abstract in their operations — challenge both design
conventions and, perhaps even more surprisingly, some of our
basic intuitions.

For the supporters of algorithmic architecture, a new field
of explorations has opened up, one that aims at a better
understanding and exploration of computation’s genuine
processes and their potential for the production of
architecture. They are fascinated by how complex
architectures emerge from simple rules and models like the

Turing Machine and the cellular automaton, in the moment of
their computation, as exemplified here by some of the work
produced by Studio Rocker® in spring 2004.

The promises and limits of such explorations are diverse.
The use of genetic algorithms has been traditionally driven by
the desire to generate novel forms yet without a deeper
consideration of their physical actualisation and performance.
Most, if not all, explorations into algorithmic process- and
form-generation generally neglect the structural and material
integrity of architecture. Nevertheless, some projects do present
a significant development within the production and discussion
of design, and many have recast the authorial role of the
architect, upsetting the guardians of the humanist school.

The projects presented in this issue attempt to counter the
neglect referred to above by exploring specific links between
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computation and material praxis. They therefore represent an
important development within the production and discourse
of design. The question remains open as to whether the turn
to computation will reconfigure architecture to such an

extent that a new kind of architecture will emerge.

Coding a Strategy for Alteration
This article presents code as a technical and discursive
construct. Code is hereby not considered a normalising
restriction of architecture, but rather as a site where a
recoding of architecture may occur. The strategy of coding
and recoding embraces the free play of symbolic code, as it
impacts on architecture’s traditional coding systems and their
standardised, prototypical material realisation. Computation
allows for the emergence of form and space independent of
such traditional constraints, and thus allows us to arrive at
alternative formal and spatial conceptions, which decode and,
at the same time, recode architecture.

Here code matters. O

Notes

1 Emphasis in this article is given to computation. The logic of computation,
not the literal use of computers, is relevant for the argument.

2 The word ‘calculus’ originated from the development of mathematics: the
early Greeks used pebbles arranged in patterns to learn arithmetic and
geometry, and the Latin word for ‘pebble’ is calculus, a diminutive of calx
(genitive calcis) meaning ‘limestone’.

3 Stephen Wolfram, Cellular Automata and Complexity: Collected Papers,
Addison-Wesley (Reading, MA), 1994,

4 Stephen Wolfram, A New Kind of Science, Wolfram Media (Champaign, IL),
2002.

5 ‘Realisation’ is in this context used in the double sense of the word,
suggesting something that becomes real and graspable, intelligible.

6 Wolfram, A New Kind of Science, p 351.

7 A term | owe to Karl Chu. For further reference see Karl Chu, Turing
Dimension, X Kavya (Los Angeles, CA), 1999.

8 Alan M Turing, ‘On computable numbers, with an application to the
Entscheidungsproblem 1936-37’, in Proceedings of the London Mathematical
Society, Ser 2, 42, pp 230-65.

9 The word ‘algorithm’ etymologically derives from the name of the 9th-
century Persian mathematician Abu Abdullah Muhammad bin Musa al-
Khwarizmi. The word ‘algorism’ originally referred only to the rules of
performing arithmetic using Hindu-Arabic numerals, but evolved via the
European-Latin translation of al-Khwarizmi’s name into ‘algorithm’ by the 18th
century. The word came to include all definite procedures for solving problems
or performing tasks. An algorithm is a finite set of well-defined instructions for
accomplishing some task. A computer program is essentially an algorithm
that determines and organises the computer’s sequence of operations. For

Brandon Williams/Studio Rocker, Expression
of code, 2004

Quite different to the Turing Machine, which only
uses a one-dimensional tape, Brandon Williams’s
design is a two-dimensional surface. Modes of
transposition determine how the abstract code,
consisting of As and Bs, realises and thus
becomes realisable as surface and structure.
Obviously, the chosen mode of transposing code
into its expression is just one of many possibles.
Any code’s expression is thus always just one of
an infinite set of possible realisations. We just
have realised the incompleteness of realisation.

any computational process, the algorithm must be rigorously defined through
a series of precise steps that determine the order of computation.

10 The Los Alamos National Laboratory, officially known only as Project Y, was
launched as a secret centralised facility in New Mexico in 1943 solely to
design and build an atomic bomb. Scientists from all over the world and from
different fields of study came together to make Los Alamos one of the US’s
premier scientific research facilities.

11 Source: http://en.wikipedia.org.

12 Christopher G Langton, ‘Cellular automata’, in Proceedings of an
Interdisciplinary Workshop, Los Alamos, New Mexico, US, 7-11 March 1983.
See also John von Neumann, Theory of Self-Reproducing Automata, edited and
completed by Arthur W Burks, University of lllinois Press (Urbana, IL), 1966.
13 See also Karl Chu, op cit.

14 Martin Gardner, ‘Mathematical Games: The fantastic combinations of John
Conway’s new solitaire game “life™, Scientific American 223, October 1970,
pp 120-3.

15 Ibid. ‘Conway chose his rules ... after a long period of experimentation, to
meet three desiderata: 1. There should be no initial pattern for which there is
a simple proof that the population can grow without limit; 2. There should be
initial patterns that apparently do grow without limit; 3. There should be
simple initial patterns that grow and change for a considerable period of time
before coming to end in three possible ways: fading away completely (from
overcrowding or becoming too sparse), settling into a stable configuration
that remains unchanged thereafter, or entering an oscillating phase in which
they repeat an endless cycle of two or more periods.

16 Ibid.

17 Aristid Lindenmayer, ‘Mathematical models for cellular interaction in
development: Parts | and II', Journal of Theoretical Biology, 18 (1968),

pp 280-315.

18 The working of L-systems is here exemplified through a simple one-
dimensional system consisting of variables (AB), constants (none), a start
point (A) and rules (A -> B and B -> AB). With each pass through the system
the rules are applied. The rule B -> AB replaces a B with AB. Consequently,
stage after stage the system’s pattern alternates.

Stage 0: A

Stage1: B

Stage 2: AB

Stage 3: BAB

Stage 4: ABBAB

Stage 5: BABABBAB

Stage 6: ABBABBABABBAB

Stage 72 BABABBABABBABBABABBAB

Any letter combination can also be used to introduce another set of rules.
19 Kostas Terzidis, Expressive Form: A Conceptual Approach to
Computational Design, Spon Press (London and New York), 2003, p 71.
20 Ibid, p 72.

21 Ibid, p 73.

22 Strategies for coding and re-coding were explored in my design studio
‘Re-coded’ at the University of Pennsylvania School of Design, Graduate
Program for Architecture, in spring 2004. The work was shown at the ‘Re-
coded: Studio Rocker’ exhibition at the Aedes Gallery East in Berlin during
July and September 2005. See also Ingeborg M Rocker, Re-coded: Studio
Rocker, Aedes East (Berlin), 2005.
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