Fractals.Py
A workbook on implementing L-system fractals using Python
Dr. Shibaji Banerjee
Department of Physics, St. Xavier’s College

Introduction

Fractals are objects whose parts are similar to the whole structure at all length scales. They are geometrical objects
which are the natural choice for modeling natural shapes like landscapes, shapes of trees, clouds and the like which
exhibit this remarkable property of approximate self-similarity. Fractals find useful applications in diverse fields like
Dynamical Systems, Computer Graphics or Cosmology This is a short primer on how to implement some algorithms
that generate fractals using python. In this session we would work with a class of fractals known as L-systems. These
fractals can be easily generated using few lines of python code. L-systems were introduced and developed in 1968 by
the Hungarian theoretical biologist and botanist from the University of Utrecht, Aristid Lindenmayer. It is most
famously used to model the growth processes of plant development, but also able to model the morphology of a variety
of organisms (Algorithmic botany). The purpose of the workbook which you are currently reading, is given below. In
the order of reducing priorities, these are:

1. To understand and translate an algorithm into action,
2. cultivate an awareness for fractal patterns,

3. relate the algorithm to the effect produced, and,

4. to appreciate the algorithmic beauty of nature.

Each of the following sections is an exercise in self-learning. You're going to learn how to implement the algorithms
leading to formation of (a) Algae duplication rules (b) Fibonacci Strings, (¢) The Cantor dust, (d) A variant of a Koch
curve and (e) The Sierpinski carpet. These appear in increasing order of complexity (and each requires a copy of the
previous file .. .)

Acknowledgements

1. The beauty of Fractals, Dr. Ananda Dasgupta, IISER, Kolkata

2. The wikipedia page on Lindenmayer systems

Prerequisites

Basic Python constructs, familiarity with turtle module. Note that from Python version 2.5 onwards
you can now use the commands £d() ,bk(),1t(),rt(),pu(),pd() etc directly without assigning
them to internal names like forward () ,backward()\ldots — the turtle module already does them
for you!. Every workout introduces you to some new python vocabulary appropriate to the task
at hand, so take your time to actually read through the text. You are required to read from the
beginning of a section till you hit a thick line and then attempt to write the code.

1 Algae

Lindenmayer’s original L-system for modeling the growth of algae consists of finding the rules behind the generation
of string patterns like:
For the n values listed in the table. It is found that the pattern can be generated using the following rules:

1. start with s=’A’
2. replace each A in the string by AB and each B in the string by A

3. go on doing this recursively for n =0...7.

n=20 A

n=1 AB

n=2 ABA

n= ABAAB

n=4 ABAABABA

n=>5 ABAABABAABAAB

n==6 ABAABABAABAABABAABABA

n=7 ABAABABAABAABABAABABAABAABABAABAAB

Table 1: Growth of Algae, according to Lindenmayer

Write a program to duplicate the output of Table-1.

If you can do it successfully in the workspace, create a file called algae.py and write a function next (s) to package
the transformations' and produce the required output. The code for this program is supplied right below, but please
consult it only if you are totally stuck at some point, or have successfully generated the output and want to compare.

Notes

All python strings have the .replace() member function attached to them which can be used for the indicated re-
placements (first check it out on a test string). There is one catch however. As soon as you make the replacements
for ’A’, the "B’ content of the string would also (usually) change(why?). Since we cannot allow this to
happen; replacements must be made to the original string, not to the semi-modified string. An easy way to do it
right would be to first change all the A’s to ’a’s and all ’B’s to ’b’s first and then replace the only lower cases by
the capitalized replacement strings. A good way to get started with this would be to do some initial tests with the
.replace() function and see how it responds (consider changing parts of your name)

Listing 1: Algae

variables : A B
constants : none
start : A

#

rules : (A > AB), (B> A)

a="A’;b="B’ #wvars
s="A" #initial state

def next(s):

20

next(s)—>s returns the next value of the iterated string
sl=s.replace(’A’,’a’)
s2=sl.replace(’'B’,’b’)
s3=s2.replace(’a’,’AB’)
s4=s3 .replace(’b’,’A")
return s4

nrange=range (8) #we would take 7 steps

#This is where the actual work is being done, the rest
#were all preparatory.
for i in nrange:

print "n=.", i,s.center (30)

s=next (s)

li.e you are required to write a function that takes in a string and gives out the next in line, e.g next(’ABA’)="ABAAB’

©Dr. Shibaji Banerjee, 2
Rights for replication, transmission, dissemination reserved

2 Fibonacci

The Fibonacci sequence is defined by the grammer:

variables : A B

constants : none

start : A

rules : (A > B), (B > AB)

In some way this executes the reverse action of Algae. The length of the strings generated for a particular value
of the iteration index are equal to the corresponding Fibonacci numbers. Generate the string values for n = 1...12
and check their length with the corresponding Fibonacci number defined through a function like fibo(n). The output
would look something like:

n= 1A len= 1 fibo= 1
n= 2B len= 1 fibo= 1
n= 3 AB len= 2 fibo= 2
n= 4 BAB len= 3 fibo= 3
n= 5 ABBAB len= 5 fibo= 5
n= 6 BABABBAB 1len= 8 fibo= 8
Notes

Python allows one to write functions that can call themselves(recursive functions). An example is the factorial function:

>>> def fact(n):
if n==0 or n==1:
return 1
else:
return n*xfact(n-1)

>>> fact(5)
120

The Fibonacci numbers can be generated by the recursion rules: £ib(1)=£fib(2)=1 and fib(n)=fib(n-1)+fib(n-2)

3 Cantor

The famous Cantor’s fractal set on a real straight line is produced by the grammar:

variables : A B

constants : none

start : A

rules : (A > ABA), (B > BBB)

Where A mean ”draw forward” and B mean "move forward” (lift pen as you move). Write a program to generate the
cantor dust using a function draw(s) which takes in a string like ABABBBABA and can carry out the instructions from
left to right. At each step reduce the step-size that the turtles take by 1/3(you can start with a step-size ~ 400).
Draw several steps(maybe 5) together in the same diagram, bringing back the turtle at the left of the screen at each
iteration and going down by some 30 units before initiating a fresh iteration. The output will appear as in Fig: 1

Notes

You may use the following function to initialize the turtle before each iteration.

©Dr. Shibaji Banerjee, 3
Rights for replication, transmission, dissemination reserved

Figure 1: Cantor dust drawn by turtle

def penreset(n):
delay(0.1)
puO
home ()
£d(-200)
#i stands for the i-th iteration step
rt(90) ;£d(i*30) ;1t(90)
pdO

Print the strings as well with each iteration. The functions pu() lifts the pen while the turtle moves, so no mark is
made on the canvas. pd() puts it down again. The delay function (belonging to the turtle module) controls the turtle
delay - it takes an argument in milliseconds. We have made it very fast so that the viewer may not be able to see the
turtle sweep back and down before each call to draw. You can set the delay to a higher value in the draw routine.
The width of the pen can be set using the width() function. We have used a width of 3. Use a call to raw_input ()
to suspend the GUI indefinitely.

4 A variant of Koch

A variant of the Koch curve which uses only right-angles is produced by the set of rules:

variables : F
constants : +,-

start : F

rules : F > F+F-F-F+F

Where the constants + stands for 1t (90) and - stands for rt (90) respectively. This time generate one curve for each
iteration. Request the user to input the number of iterations, step-size and delay for each drawing. It would be better
to backtrack by about 200 steps before the drawing actually begins. Some pictures from a sample run is shown in
Fig: 2.

4.1 Notes

Choose smaller values of step-sizes and delays for large iterations. You can go from n = 0...6. Use stepsizes like
20,10,5,2.5,1.5 etc. Note the self-similarity of this and the following curve. The draw() function that I have used is
given below:

def draw(s):
for i in s:

if i=="F’:
fd(step)

elif i==’+":
1t (90)

elif i==’-’:
rt(90)

©Dr. Shibaji Banerjee, 4
Rights for replication, transmission, dissemination reserved

n=5

Figure 2: Koch curves drawn by turtle

To hide the turtle after completing the drawing, the hideturtle command can be quite useful.

5 Sierpinsky
The Sierpinski carpet, another space filling curve is produced by the directives:

variables : A,B
constants : +,-

start : A
rules : A>B-A-B; B>A+B+A
angle : 60

Where the angle is the ‘turn-angle’ for left and right turns. Implement this in a program. Sample outputs are shown
in Fig: 3

©Dr. Shibaji Banerjee, 5
Rights for replication, transmission, dissemination reserved

n=6
stepsize : 1.5
delay 0.1 ms

Figure 3: The Sierpinski carpets drawn by the turtle

6 Codes and Output
6.1 Algae

Code and ouput appears in the Sec. (1) of the text.
6.2 Fibonacci

Listing 2: Fibonacci

variables : A B
constants : none
start : A
rules : (A> B), (B> AB)
def fibo(n):
if n > 2:
return fibo (n—1)+fibo (n—2)
elif n =1 or n = 2:
return 1
a="A’;b="B"’

S:7A7

def next(s):
sl=s.replace(’A’,’a’)
s2=sl.replace(’'B’,’b’)
s3=s2.replace(’a’,’'B’)
s4=s3 .replace(’b’,’AB’)
return s4

nrange=range (1,12) #fibo cannot start from 0, so the range must start from 1
for i in nrange:

©Dr. Shibaji Banerjee, 6
Rights for replication, transmission, dissemination reserved

L print "n=.", i, s, ’len=_.", len(s),

s=next (s)

"fibo=_", fibo (i)

Sample output appears in Sec. (2) of the text.

6.3 Cantor
Listing 3: Cantor
variables : A B
constants : none
start : A
rules : (A > ABA), (B> BBB)
from turtle import x
reset ()
a:7A7;b:7B7
S:7A7

STEPSIZE=400

def next(s):
sl=s.replace(’A’,’a’)
s2=sl.replace(’'B’,’b’)
s3=s2.replace(’a’,’ABA’)
s4=s3 .replace(’b’, ’BBB’)
return s4

def draw(s):

delay (50)
for char in s:
if char=—’A’:
pd (); fd (STEPSIZE)
elif char — ’'B’:

u(); fd (STEPSIZE)

def penreset(n):
delay (0.1)
pu ()
home ()
fd (—200)
t(90);fd(i%30);1t(90)
pd ()

nrange=range (6)

width (3);

for i in nrange:
print i,s
penreset (1)
draw (s)
STEPSIZE=STEPSIZE /3.0
s=next (s)

hideturtle ()
raw_input (’Enter_to_quit)

N\

Sample output appears in Fig. (1).

6.4 Koch

©Dr. Shibaji Banerjee,

Rights for replication, transmission, dissemination reserved

Listing 4: Koch

-
variables : F

constants : +,—

start : F

rules : F > F+F-F-F+F
from turtle import x

f="F’

s="F’

step=20

def next(s):
sl=s.replace ('F’,"F+F-F-F+F’)
return(sl)

def draw(s):
for i in s:

if i="F’:
fd (step)

elif i=—’+":
1t (90)

elif i=—"—":
rt(90)

n=input (’order?:’)
step=input (’stepsize ?: ")
d=input (’delay ?: ")

for i in range(n):
s=next (s)

pu(); bk(200);pd()
delay (d)

draw (s)

hideturtle ()

raw_input ('Enter_to_quit.’)

=

Sample output appears in Fig. (2).
6.5 Sierpinski

Listing 5: Sierpinski

variables : A,B

constants : +,—

start : A

rules : A>B—- A—- B; B>A+ B+ A
angle : 60

R NN NN

from turtle import x
a='A’;b="B’;ang=60
S:)A)

step=20

def next(s):

sl=s.replace(’A’,’a’)

©Dr. Shibaji Banerjee,
Rights for replication, transmission, dissemination reserved

s2=sl.replace(’'B’,’b")
s3=s2.replace(’a’,’B-A-B’)
s4=s3 .replace(’b’,’A+B+A’)
return (s4)

def draw(s):
for i in s:

if i='A’ or i='B’:
fd (step)

elif i=—’+":
1t (ang)

elif i="-":
rt (ang)

n=input (’order?:’)
step=input (’stepsize ?: ")
d=input (’delay ?: ")

for i in range(n):
s=next (s)

pu(); bk(200);pd()
delay (d)

draw (s)

hideturtle ()

raw_input (’Enter_.to_quit.)

Sample output appears in Fig. (3).

©Dr. Shibaji Banerjee,
Rights for replication, transmission, dissemination reserved

