
Morphogenesis,

Lindenmayer Systems and

Generative Encodings

Gabriela Ochoa

http://www.ldc.usb.ve/~gabro/

Content

 Morphogenesis
 Biology

 Alife

 Lindenmayer Systems
 Self-similarity, Rewriting

 D0L-systems

 Graphic Interpretation

 Generative or rule-based
encodings for Evolutionary
Algorithms

Morphogenesis in Biology

 One of the major outstanding
problems in the biological
sciences

 Fundamental question of
how biological form and
structure are generated

 Biological form at many
levels, from individual cells,
through the formation
tissues, to the assembly of
organs and whole
organisms.

Morphogenesis in Alife

 Central Question in Morphogenesis: How the
information coded in linear DNA molecules
becomes translated into a three-dimensional form?

 Going from Genotype to Phenotype

 General assumption: the DNA does not specify 'as
some kind of description' or ‘blueprint’ the final
form of the body. More like 'a recipe' for baking a
cake

 A typical Alife approach is to look at possible, very
general, ways to generate complex forms from
relatively simple rules -- often very abstract

L-Systems

 A model of morphogenesis, based on

formal grammars (set of rules and

symbols)

 Introduced in 1968 by the Swedish

biologist A. Lindenmayer

 Originally designed as a formal

description of the development of

simple multi-cellular organisms

 Later on, extended to describe higher

plants and complex branching

structures.

Self-Similarity

“When a piece of a shape is

geometrically similar to the whole,

both the shape and the cascade

that generate it are called self-

similar” (Mandelbrot, 1982)

The recursive nature of the L-system rules

leads to self-similarity and thereby fractal-

like forms are easy to describe with an L-

system.

Self-Similarity in

Fractals

• Exact

• Example Koch snowflake

curve

• Starts with a single line

segment

• On each iteration replace

each segment by

• As one successively

zooms in the resulting

shape is exactly the same

Self-similarity in

Nature

• Approximate

• Only occurs over a few

discrete scales (3 in this

Fern)

• Self-similarity in plants is a

result of developmental

processes, since in their

growth process some

structures repeat regularly.

(Mandelbrot, 1982)

Rewriting

 Define complex objects by

successively replacing parts of

a simple object using a set of

rewriting rules or productions.

 Example: Graphical object

defined in terms of rewriting

rules - Snowflake curve

 Construction: recursively

replacing open polygons
First four orders of the

Koch Curve

Rewriting Systems on Character Strings

 The most extensively studied rewriting systems
operate on character strings (Late 50s,
Chomsky`s work on formal grammars)

 Later applications to Computer and formal
Languges (BNF form)

 A. Lindenmayer (1968) new type of string-
rewriting mechanism (L-systems).

 In L-systems productions are applied in parallel
Reflects Biological motivation of L-systems

Types of L-systems

 Context-free: production rules refer only to an
individual symbol

 Context-sensitive: the production rules apply
to a particular symbol only if the symbol has
certain neighbours

 Deterministic: If there is exactly one
production for each symbol,

 Stochastic: If there are several, and each is
chosen with a certain probability during each
iteration

D0L-systems

 Simplest class of L-systems,

deterministic and context free.

 Example:

 Alphabet = {a,b}

 Rules = {a → ab, b → a}

 Axiom: b

b

|

a

└

a b

┘ │

a b a

┘ │ └

a b a a b

_/ / ┘ └ \

a b a a b a b a

Example of a derivation in a

DOL-System

Syntax of a production rule:

Initiator → Generator

Graphic Interpretation

 L-systems were conceived as a formal theory of

development. Geometric aspects were not considered

 Later, geometrical interpretations were proposed. Tool

for fractal and plant modelling

 Graphic Interpretation of strings, based on turtle

geometry (Prusinkiewicz et al, 89). State of the turtle: (x, y, α)

 (x, y): Cartesian coordinates, turtle position

 α: angle (heading) direction in which the turtle is facing

 Given the step size d and the angle increment δ, the

turtle can respond to the commands represented by the

following symbols:

Turtle Interpretation of Strings

F Move forward a step of length d. The state of

the turtle changes to (x',y',α), where x'= x + d cos(α)

and y'= y + d sin(α). A line segment between points

(x,y) and (x',y') is drawn

f Move forward a step of length d without drawing a line.

The state of the turtle changes as above

+ Turn left by angle δ. The next state of the turtle is

(x,y, α + δ)

- Turn left by angle δ. The next state of the turtle is

(x, y, α -b)

Turtle Interpretation of Strings

w: F+F+F+F

p: F →F+F-F-FF+F+F-F

Angle (δ) = 90º

n= 0 n = 1 n = 2

Quadratic

Koch island

Bracketed L-systems

 To represent branching structures, L-systems

alphabet is extended with two new symbols:

[,], to delimit a branch. They are interpreted

as follows:
[Push the current state of the turtle onto a pushdown

stack.

] Pop a state from the stack and make it the current state

of the turtle. No line is drawn, in general the position of

the turtle changes

w: F

p: F → F[-F]F[+F][F]

Angle (δ) = 60º

n = 1 - 5

Turtle Interpretation of Bracketed Strings

Modeling in Three Dimensions

 Turtle interpretation of strings can be extended to 3D

 Represent the current orientation of the turtle in spave by

3 vectors: H, L, U, indicating turtle’s Heading, the

direction to the Left, and, the direction to the Right.

 3 rotation matrices: RU, RL, and RH and a fixed angle δ

 The following symbols control turtle orientation in space:

 +, - : Turn left and right, using matrix RU(δ)

 &, ^ : Pitch down and up, using matrix RL(δ)

 \, / : Roll left and right, using matrix RH(δ)

 | : Turning around, using matrix RU(180º)

3D L-Systems

3D Bracketed L-Systems

Generative Encodings for Evolutionary

Algorithms

 EAs has been applied to design
problems. Past work has typically
used a direct encoding of the
solution

 Alternative: Generative encoding,
i.e. an encoding that specifies
how to construct the genotype

 Greater scalability through self-
similar and hierarchical structure
and reuse of parts

 Closer to Natural DNA encoding

Examples of Generative Encoding for

EAs

 Biomorphs, The Blind Watchmaker (R. Dawkins)

 Graph encoding for animated 3D creatures (K. Sims)

 L-Systems: plant-like structures, architectural floor
design, tables, locomoting robots (C.Jacob, G. Ochoa,
G. Hornby & J. Pollack, and others)

 Cellular automata rules to produce 2D shapes (H. de
Garis)

 Context rules to produce 2D tiles (P. Bentley and S.
Kumar)

 Cellular encoding for artificial neural networks (F. Gruau)

 Graph generating grammar for artificial neural networks
(H. Kitano)

Evolving Plant-like Structures

 Alife system for simulating the evolution of

artificial plants

 Genotype: single ruled bracketed D0L-systems.

 L-system: w: F, p: F → F[-F]F[+F][F]

 Chromosome: F[-F]F[+F][F]

 Phenotype: 2D branching structures, resulting

from derivation and graphic interpretation of L-

systems

 Genetic Operators: Recombination and mutation

operators that preserve the syntactic structure of

rules

Recombination

Parents Offspring

F[-FF]+[FFF]-FF[-F-F] F[+F]+[-F-F]-FF[+F][-F][F] F[-FF]+[FFF]-FF[+F] F[+F]+[-F-F]-FF[-F-F][-F][F]

Mutation

Symbol

Mutation

Block

Mutation

F[+F]+[+F-F-F]-FF[-F-F]

F[+F]+[+F-F-F]-F[-F][-F-F]

FF[+FF][-F+F][FFF]F

FF[+FF][-F+F][-F]F

Evolving Plant-like Structures

 Selection

 Automated: fitness Function inspired by evolutionary

hypothesis concerning the factors that have had the

greatest effect on plant evolution.

 Interactive: allowing the user to direct evolution towards

preferred phenotypes

 It is difficult of automatically measuring the

aesthetic visual success of simulated objects or

images. In most previous work the fitness is

provided through visual inspection by a human

Automated Selection

 Hypotheses about plant evolution (K.Niklas, 1985):
 Plants with branching patterns that gather the most light can be

predicted to be the most successful (photosynthesis).

 Evolution of plants was driven by the need to reconcile the ability to

support vertical branching structures

 Analytic procedure, components:

 (a) phototropism (growth movement of plants in response to

stimulus of light),

 (b) bilateral symmetry,

 (c) proportion of branching points.

Results

Considering

phototropism, and

symmetry

Considering

phototropism,

symmetry and

branching points

Considering symmetry only

Considering

branching points

only

Considering

phototropism only

Obtained by a fitness function

considering symmetry only.

And interactively mutating and

recombining organisms

Sea Stars and Urchins

Some others unexpected figures!

Animals

Stars

Rockets

Candlestick

Developmental rules for Neural

Networks - 1

Firstly, biological neural networks:

there is simply not enough information in all our DNA to

specify all the architecture, the connections within our

nervous systems.

So DNA (... with other factors ...) must provide a

developmental 'recipe' which in some sense (partially)

determines nervous system structure -- and hence contributes

to our behaviour.

Developmental rules for Neural

Networks - 2
Secondly, artificial neural networks (ANNs):

we build robots or software agents with ANNs which act as their

nervous system or control system

Alternatives: (1) Design, (2) Evolve ANN architecture.

Evolving: (2.1) Direct encoding, (2.2) Generative encoding

Early References: Frederick Gruau, and Hiroaki Kitano.

Gruau invented 'Cellular Encoding', with similarities to L-

Systems, and used this for evolutionary robotics.

Kitano invented a 'Graph Generating Grammar‘.: A Graph L-

System that generates not a 'tree', but a connectivity matrix for a

network

Generative Representations for Design

Automation
 Dynamical & Evolutionary

Machine Organization (DEMO).

Brandeis University, Boston, USA

Evolved Tables: Fitness function

rewarded structures for maximizing:

height; surface area; stability/volume;

and minimizing the number of cubes.

http://www.demo.cs.brandeis.edu/index.html

Hierarchically Regular Locomoting Robots

Evolve both the morphology and the controllers for

different robots. Generative encoding based on L-

systems

Scorpion Serpent

A constructed

genobot

Grammar Based Representation of

Transmission Towers

Real world towers

translated into the

grammar language

Evolutionary

approach was

applied to the

Inverse Problem

i.e. The identification

of a grammar that

generates a

predetermined tower

Conclusions (based on Hornby et. al)

 Main criticism for the use of EAs for design: it is doubtful

whether it will reach the high complexities necessary for

real applications

 Since the search space grows exponentially with the size

of the problem, EAs with direct encoding will not scale to

large designs

 Generative encoding (i.e. a grammatical encoding that

specifies how to construct a design) can achieve greater

scalability through self-similar and hierarchical structure

 Trough reuse of parts generative encoding is a more

compact encoding of a solution

References

 Aristid Lindenmayer. Mathematical models for cellular interaction in development. parts I and II.
Journal of Theoretical Biology, 18:280–299 and 300–315, 1968.

 P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag, 1990.

 Richard Dawkins. The Evolution of Evolvability. In Artificial Life, C. Langton (ed) Addison Wesley
1989

 Richard Dawkins. The Blind Watchmaker. Harlow Longman (1986)

 Karl Niklas. Computer Simulated Plant Evolution. Scientific American (May 1985), (1985)

 Karl Niklas. Biophysical limitations on plant form and evolution. Plant Evolutionary Biology,Ed. L.
D. Gottlieb and S. K. Jain. Chapman and Hall Ltd, (1988)

 H. Kitano. Designing neural networks using genetic algorithms with graph generation system.
Complex Systems,4:461–476, 1990.

 Hugo de Garis. Artificial embryology : The genetic programming of an artificial embryo. In Branko
Soucek and the IRIS Group, editors, Dynamic, Genetic and Chaotic Programming.Wiley, 1992.

 Karl Sims. Evolving Virtual Creatures. In SIGGRAPH 94 Conference Proceedings, Annual
Conference Series,pages 15–22, 1994.

 Karl Sims. Evolving 3d morphology and behavior by competition. In R. Brooks and P. Maes,
editors, Proceedings of the Fourth Workshop on Artificial Life,pages 28–39, Boston, MA, 1994.
MIT Press.

 Gabriela Ochoa. On genetic algorithms and lindenmayer systems.In A. Eiben, T. Baeck, M.
Schoenauer, and H. P.Schwefel, editors, Parallel Problem Eolving from NatureV, pages 335–344.
Springer-Verlag, 1998

References

 C. Jacob. Genetic L-system Programming. In Y. Davidor and P. Schwefel, editors, Parallel
Problem Solvingfrom Nature III, Lecture Notes in Computer Science,volume 866, pages 334–343,
1994.

 P. Coates, T. Broughton, and H. Jackson. Exploringthree-dimensional design worlds using
lindenmayersystems and genetic programming. In P. J. Bentley, editor,Evolutionary Design by
Computers, 1999

 C. Traxler and M. Gervautz. Using genetic algorithms to improve the visual quality of fractal plants
generated with csg-pl-systems. In Proc. Fourth International Conference in Central Europe on
Computer Graphics andVisualization 96, 1996.

 P. Bentley and S. Kumar. Three ways to grow designs: Acomparison of embryogenies of an
evolutionary design problem. In Banzhaf, Daida, Eiben, Garzon, Honavar,Jakiel, and Smith,
editors, Genetic and EvolutionaryComputation Conference, pages 35–43, 1999.

 Frederic Gruau. Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm.
PhD thesis, Ecole Normale Sup´erieure de Lyon, 1994.

 Frederic Gruau and Kameel Quatramaran. Cellular encoding for interactive evolutionary robotics.
Technical Report 425, University of Sussex, 1996.

 Rudolph, S., Alber, R.: An Evolutionary Approach To The Inverse Problem In Rule-based Design
Representations. Proceedings 7th International Conference onArtificial Intelligence in Design
(AID’02), Kluwer Academic Publishers, 2002.

References

 Hornby, Gregory S., Lipson, Hod, and Pollack, Jordan B. Generative Representations for
the Automated Design of Modular Physical Robots. IEEE Transactions on Robotics and
Automation. (conditionally accepted).

 Pollack, Jordan B., Hornby, Gregory S., Lipson, Hod, and Funes, Pablo. Computer
Creativity in the Automatic Design of Robots. Leonardo, Journal for the International
Society for Arts Sciences and Technology. 36:2, 2003.

 Hornby, Gregory S. and Pollack, Jordan B. Creating High-level Components with a
Generative Representation for Body-Brain Evolution. Artificial Life, 2002, 8:3.

 Hornby, Gregory S. and Pollack, Jordan B. Evolving L-Systems to Generate Virtual
Creatures.
Computers and Graphics, 2001, 25:6, pp 1041-1048.

 Pollack, Jordan B., Lipson, Hod, Hornby, Gregory S., and Funes, Pablo. Three
Generations of Automatically Designed Robots. Artificial Life, 7:3, pg 215-223. 2001.

 Hornby, Gregory S. and Pollack, Jordan B. Body-Brain Coevolution Using L-systems as
a Generative Encoding.
Genetic and Evolutionary Computation Conference (GECCO) 2001.

 Hornby, Gregory S., Lipson, Hod, and Pollack, Jordan B. (2001). Evolution of Generative
Design Systems for Modular Physical Robots.
IEEE International Conference on Robotics and Automation (ICRA).

 Hornby, Gregory S. and Pollack, Jordan B. The Advantages of Generative Grammatical
Encodings for Physical Design.
Congress on Evolutionary Computation (CEC) 2001.

http://www.demo.cs.brandeis.edu/papers/long.html#hornby_alife02
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_cag01
http://www.demo.cs.brandeis.edu/papers/long.html#pollack_alife01
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_gecco01
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_icra01
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_cec01

