
Morphogenesis,

Lindenmayer Systems and

Generative Encodings

Gabriela Ochoa

http://www.ldc.usb.ve/~gabro/

Content

 Morphogenesis
 Biology

 Alife

 Lindenmayer Systems
 Self-similarity, Rewriting

 D0L-systems

 Graphic Interpretation

 Generative or rule-based
encodings for Evolutionary
Algorithms

Morphogenesis in Biology

 One of the major outstanding
problems in the biological
sciences

 Fundamental question of
how biological form and
structure are generated

 Biological form at many
levels, from individual cells,
through the formation
tissues, to the assembly of
organs and whole
organisms.

Morphogenesis in Alife

 Central Question in Morphogenesis: How the
information coded in linear DNA molecules
becomes translated into a three-dimensional form?

 Going from Genotype to Phenotype

 General assumption: the DNA does not specify 'as
some kind of description' or ‘blueprint’ the final
form of the body. More like 'a recipe' for baking a
cake

 A typical Alife approach is to look at possible, very
general, ways to generate complex forms from
relatively simple rules -- often very abstract

L-Systems

 A model of morphogenesis, based on

formal grammars (set of rules and

symbols)

 Introduced in 1968 by the Swedish

biologist A. Lindenmayer

 Originally designed as a formal

description of the development of

simple multi-cellular organisms

 Later on, extended to describe higher

plants and complex branching

structures.

Self-Similarity

“When a piece of a shape is

geometrically similar to the whole,

both the shape and the cascade

that generate it are called self-

similar” (Mandelbrot, 1982)

The recursive nature of the L-system rules

leads to self-similarity and thereby fractal-

like forms are easy to describe with an L-

system.

Self-Similarity in

Fractals

• Exact

• Example Koch snowflake

curve

• Starts with a single line

segment

• On each iteration replace

each segment by

• As one successively

zooms in the resulting

shape is exactly the same

Self-similarity in

Nature

• Approximate

• Only occurs over a few

discrete scales (3 in this

Fern)

• Self-similarity in plants is a

result of developmental

processes, since in their

growth process some

structures repeat regularly.

(Mandelbrot, 1982)

Rewriting

 Define complex objects by

successively replacing parts of

a simple object using a set of

rewriting rules or productions.

 Example: Graphical object

defined in terms of rewriting

rules - Snowflake curve

 Construction: recursively

replacing open polygons
First four orders of the

Koch Curve

Rewriting Systems on Character Strings

 The most extensively studied rewriting systems
operate on character strings (Late 50s,
Chomsky`s work on formal grammars)

 Later applications to Computer and formal
Languges (BNF form)

 A. Lindenmayer (1968) new type of string-
rewriting mechanism (L-systems).

 In L-systems productions are applied in parallel
Reflects Biological motivation of L-systems

Types of L-systems

 Context-free: production rules refer only to an
individual symbol

 Context-sensitive: the production rules apply
to a particular symbol only if the symbol has
certain neighbours

 Deterministic: If there is exactly one
production for each symbol,

 Stochastic: If there are several, and each is
chosen with a certain probability during each
iteration

D0L-systems

 Simplest class of L-systems,

deterministic and context free.

 Example:

 Alphabet = {a,b}

 Rules = {a → ab, b → a}

 Axiom: b

b

|

a

└

a b

┘ │

a b a

┘ │ └

a b a a b

_/ / ┘ └ \

a b a a b a b a

Example of a derivation in a

DOL-System

Syntax of a production rule:

Initiator → Generator

Graphic Interpretation

 L-systems were conceived as a formal theory of

development. Geometric aspects were not considered

 Later, geometrical interpretations were proposed. Tool

for fractal and plant modelling

 Graphic Interpretation of strings, based on turtle

geometry (Prusinkiewicz et al, 89). State of the turtle: (x, y, α)

 (x, y): Cartesian coordinates, turtle position

 α: angle (heading) direction in which the turtle is facing

 Given the step size d and the angle increment δ, the

turtle can respond to the commands represented by the

following symbols:

Turtle Interpretation of Strings

F Move forward a step of length d. The state of

the turtle changes to (x',y',α), where x'= x + d cos(α)

and y'= y + d sin(α). A line segment between points

(x,y) and (x',y') is drawn

f Move forward a step of length d without drawing a line.

The state of the turtle changes as above

+ Turn left by angle δ. The next state of the turtle is

(x,y, α + δ)

- Turn left by angle δ. The next state of the turtle is

(x, y, α -b)

Turtle Interpretation of Strings

w: F+F+F+F

p: F →F+F-F-FF+F+F-F

Angle (δ) = 90º

n= 0 n = 1 n = 2

Quadratic

Koch island

Bracketed L-systems

 To represent branching structures, L-systems

alphabet is extended with two new symbols:

[,], to delimit a branch. They are interpreted

as follows:
[Push the current state of the turtle onto a pushdown

stack.

] Pop a state from the stack and make it the current state

of the turtle. No line is drawn, in general the position of

the turtle changes

w: F

p: F → F[-F]F[+F][F]

Angle (δ) = 60º

n = 1 - 5

Turtle Interpretation of Bracketed Strings

Modeling in Three Dimensions

 Turtle interpretation of strings can be extended to 3D

 Represent the current orientation of the turtle in spave by

3 vectors: H, L, U, indicating turtle’s Heading, the

direction to the Left, and, the direction to the Right.

 3 rotation matrices: RU, RL, and RH and a fixed angle δ

 The following symbols control turtle orientation in space:

 +, - : Turn left and right, using matrix RU(δ)

 &, ^ : Pitch down and up, using matrix RL(δ)

 \, / : Roll left and right, using matrix RH(δ)

 | : Turning around, using matrix RU(180º)

3D L-Systems

3D Bracketed L-Systems

Generative Encodings for Evolutionary

Algorithms

 EAs has been applied to design
problems. Past work has typically
used a direct encoding of the
solution

 Alternative: Generative encoding,
i.e. an encoding that specifies
how to construct the genotype

 Greater scalability through self-
similar and hierarchical structure
and reuse of parts

 Closer to Natural DNA encoding

Examples of Generative Encoding for

EAs

 Biomorphs, The Blind Watchmaker (R. Dawkins)

 Graph encoding for animated 3D creatures (K. Sims)

 L-Systems: plant-like structures, architectural floor
design, tables, locomoting robots (C.Jacob, G. Ochoa,
G. Hornby & J. Pollack, and others)

 Cellular automata rules to produce 2D shapes (H. de
Garis)

 Context rules to produce 2D tiles (P. Bentley and S.
Kumar)

 Cellular encoding for artificial neural networks (F. Gruau)

 Graph generating grammar for artificial neural networks
(H. Kitano)

Evolving Plant-like Structures

 Alife system for simulating the evolution of

artificial plants

 Genotype: single ruled bracketed D0L-systems.

 L-system: w: F, p: F → F[-F]F[+F][F]

 Chromosome: F[-F]F[+F][F]

 Phenotype: 2D branching structures, resulting

from derivation and graphic interpretation of L-

systems

 Genetic Operators: Recombination and mutation

operators that preserve the syntactic structure of

rules

Recombination

Parents Offspring

F[-FF]+[FFF]-FF[-F-F] F[+F]+[-F-F]-FF[+F][-F][F] F[-FF]+[FFF]-FF[+F] F[+F]+[-F-F]-FF[-F-F][-F][F]

Mutation

Symbol

Mutation

Block

Mutation

F[+F]+[+F-F-F]-FF[-F-F]

F[+F]+[+F-F-F]-F[-F][-F-F]

FF[+FF][-F+F][FFF]F

FF[+FF][-F+F][-F]F

Evolving Plant-like Structures

 Selection

 Automated: fitness Function inspired by evolutionary

hypothesis concerning the factors that have had the

greatest effect on plant evolution.

 Interactive: allowing the user to direct evolution towards

preferred phenotypes

 It is difficult of automatically measuring the

aesthetic visual success of simulated objects or

images. In most previous work the fitness is

provided through visual inspection by a human

Automated Selection

 Hypotheses about plant evolution (K.Niklas, 1985):
 Plants with branching patterns that gather the most light can be

predicted to be the most successful (photosynthesis).

 Evolution of plants was driven by the need to reconcile the ability to

support vertical branching structures

 Analytic procedure, components:

 (a) phototropism (growth movement of plants in response to

stimulus of light),

 (b) bilateral symmetry,

 (c) proportion of branching points.

Results

Considering

phototropism, and

symmetry

Considering

phototropism,

symmetry and

branching points

Considering symmetry only

Considering

branching points

only

Considering

phototropism only

Obtained by a fitness function

considering symmetry only.

And interactively mutating and

recombining organisms

Sea Stars and Urchins

Some others unexpected figures!

Animals

Stars

Rockets

Candlestick

Developmental rules for Neural

Networks - 1

Firstly, biological neural networks:

there is simply not enough information in all our DNA to

specify all the architecture, the connections within our

nervous systems.

So DNA (... with other factors ...) must provide a

developmental 'recipe' which in some sense (partially)

determines nervous system structure -- and hence contributes

to our behaviour.

Developmental rules for Neural

Networks - 2
Secondly, artificial neural networks (ANNs):

we build robots or software agents with ANNs which act as their

nervous system or control system

Alternatives: (1) Design, (2) Evolve ANN architecture.

Evolving: (2.1) Direct encoding, (2.2) Generative encoding

Early References: Frederick Gruau, and Hiroaki Kitano.

Gruau invented 'Cellular Encoding', with similarities to L-

Systems, and used this for evolutionary robotics.

Kitano invented a 'Graph Generating Grammar‘.: A Graph L-

System that generates not a 'tree', but a connectivity matrix for a

network

Generative Representations for Design

Automation
 Dynamical & Evolutionary

Machine Organization (DEMO).

Brandeis University, Boston, USA

Evolved Tables: Fitness function

rewarded structures for maximizing:

height; surface area; stability/volume;

and minimizing the number of cubes.

http://www.demo.cs.brandeis.edu/index.html

Hierarchically Regular Locomoting Robots

Evolve both the morphology and the controllers for

different robots. Generative encoding based on L-

systems

Scorpion Serpent

A constructed

genobot

Grammar Based Representation of

Transmission Towers

Real world towers

translated into the

grammar language

Evolutionary

approach was

applied to the

Inverse Problem

i.e. The identification

of a grammar that

generates a

predetermined tower

Conclusions (based on Hornby et. al)

 Main criticism for the use of EAs for design: it is doubtful

whether it will reach the high complexities necessary for

real applications

 Since the search space grows exponentially with the size

of the problem, EAs with direct encoding will not scale to

large designs

 Generative encoding (i.e. a grammatical encoding that

specifies how to construct a design) can achieve greater

scalability through self-similar and hierarchical structure

 Trough reuse of parts generative encoding is a more

compact encoding of a solution

References

 Aristid Lindenmayer. Mathematical models for cellular interaction in development. parts I and II.
Journal of Theoretical Biology, 18:280–299 and 300–315, 1968.

 P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag, 1990.

 Richard Dawkins. The Evolution of Evolvability. In Artificial Life, C. Langton (ed) Addison Wesley
1989

 Richard Dawkins. The Blind Watchmaker. Harlow Longman (1986)

 Karl Niklas. Computer Simulated Plant Evolution. Scientific American (May 1985), (1985)

 Karl Niklas. Biophysical limitations on plant form and evolution. Plant Evolutionary Biology,Ed. L.
D. Gottlieb and S. K. Jain. Chapman and Hall Ltd, (1988)

 H. Kitano. Designing neural networks using genetic algorithms with graph generation system.
Complex Systems,4:461–476, 1990.

 Hugo de Garis. Artificial embryology : The genetic programming of an artificial embryo. In Branko
Soucek and the IRIS Group, editors, Dynamic, Genetic and Chaotic Programming.Wiley, 1992.

 Karl Sims. Evolving Virtual Creatures. In SIGGRAPH 94 Conference Proceedings, Annual
Conference Series,pages 15–22, 1994.

 Karl Sims. Evolving 3d morphology and behavior by competition. In R. Brooks and P. Maes,
editors, Proceedings of the Fourth Workshop on Artificial Life,pages 28–39, Boston, MA, 1994.
MIT Press.

 Gabriela Ochoa. On genetic algorithms and lindenmayer systems.In A. Eiben, T. Baeck, M.
Schoenauer, and H. P.Schwefel, editors, Parallel Problem Eolving from NatureV, pages 335–344.
Springer-Verlag, 1998

References

 C. Jacob. Genetic L-system Programming. In Y. Davidor and P. Schwefel, editors, Parallel
Problem Solvingfrom Nature III, Lecture Notes in Computer Science,volume 866, pages 334–343,
1994.

 P. Coates, T. Broughton, and H. Jackson. Exploringthree-dimensional design worlds using
lindenmayersystems and genetic programming. In P. J. Bentley, editor,Evolutionary Design by
Computers, 1999

 C. Traxler and M. Gervautz. Using genetic algorithms to improve the visual quality of fractal plants
generated with csg-pl-systems. In Proc. Fourth International Conference in Central Europe on
Computer Graphics andVisualization 96, 1996.

 P. Bentley and S. Kumar. Three ways to grow designs: Acomparison of embryogenies of an
evolutionary design problem. In Banzhaf, Daida, Eiben, Garzon, Honavar,Jakiel, and Smith,
editors, Genetic and EvolutionaryComputation Conference, pages 35–43, 1999.

 Frederic Gruau. Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm.
PhD thesis, Ecole Normale Sup´erieure de Lyon, 1994.

 Frederic Gruau and Kameel Quatramaran. Cellular encoding for interactive evolutionary robotics.
Technical Report 425, University of Sussex, 1996.

 Rudolph, S., Alber, R.: An Evolutionary Approach To The Inverse Problem In Rule-based Design
Representations. Proceedings 7th International Conference onArtificial Intelligence in Design
(AID’02), Kluwer Academic Publishers, 2002.

References

 Hornby, Gregory S., Lipson, Hod, and Pollack, Jordan B. Generative Representations for
the Automated Design of Modular Physical Robots. IEEE Transactions on Robotics and
Automation. (conditionally accepted).

 Pollack, Jordan B., Hornby, Gregory S., Lipson, Hod, and Funes, Pablo. Computer
Creativity in the Automatic Design of Robots. Leonardo, Journal for the International
Society for Arts Sciences and Technology. 36:2, 2003.

 Hornby, Gregory S. and Pollack, Jordan B. Creating High-level Components with a
Generative Representation for Body-Brain Evolution. Artificial Life, 2002, 8:3.

 Hornby, Gregory S. and Pollack, Jordan B. Evolving L-Systems to Generate Virtual
Creatures.
Computers and Graphics, 2001, 25:6, pp 1041-1048.

 Pollack, Jordan B., Lipson, Hod, Hornby, Gregory S., and Funes, Pablo. Three
Generations of Automatically Designed Robots. Artificial Life, 7:3, pg 215-223. 2001.

 Hornby, Gregory S. and Pollack, Jordan B. Body-Brain Coevolution Using L-systems as
a Generative Encoding.
Genetic and Evolutionary Computation Conference (GECCO) 2001.

 Hornby, Gregory S., Lipson, Hod, and Pollack, Jordan B. (2001). Evolution of Generative
Design Systems for Modular Physical Robots.
IEEE International Conference on Robotics and Automation (ICRA).

 Hornby, Gregory S. and Pollack, Jordan B. The Advantages of Generative Grammatical
Encodings for Physical Design.
Congress on Evolutionary Computation (CEC) 2001.

http://www.demo.cs.brandeis.edu/papers/long.html#hornby_alife02
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_cag01
http://www.demo.cs.brandeis.edu/papers/long.html#pollack_alife01
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_gecco01
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_icra01
http://www.demo.cs.brandeis.edu/papers/long.html#hornby_cec01

