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Morphogenesis in Biology

 One of the major outstanding 
problems in the biological 
sciences 

 Fundamental question of 
how biological form and 
structure are generated

 Biological form at many 
levels, from individual cells, 
through the formation 
tissues, to the assembly of 
organs and whole 
organisms.



Morphogenesis in Alife

 Central Question in Morphogenesis: How the 
information coded in linear DNA molecules 
becomes translated into a three-dimensional form?

 Going from Genotype to Phenotype

 General assumption: the DNA does not specify 'as  
some kind of description' or ‘blueprint’ the final 
form of the body. More like 'a recipe' for baking a 
cake

 A typical Alife approach is to look at possible, very 
general, ways to generate complex forms from 
relatively simple rules -- often very abstract



L-Systems

 A model of morphogenesis, based on 

formal grammars (set of rules and 

symbols)

 Introduced in 1968 by the Swedish 

biologist A. Lindenmayer 

 Originally designed as a formal 

description of the development of 

simple multi-cellular organisms 

 Later on, extended to describe higher 

plants and complex branching 

structures. 



Self-Similarity

“When a piece of a shape is 

geometrically similar to the whole, 

both the shape and the cascade 

that generate it are called self-

similar”  (Mandelbrot, 1982)

The recursive nature of the L-system rules 

leads to self-similarity and thereby fractal-

like forms are easy to describe with an L-

system. 



Self-Similarity in 

Fractals

• Exact

• Example Koch snowflake 

curve

• Starts with a single line 

segment

• On each iteration replace 

each segment by

• As one successively 

zooms in the resulting 

shape is exactly the same 



Self-similarity in 

Nature

• Approximate

• Only occurs over a few 

discrete  scales (3 in this 

Fern)

• Self-similarity in plants is a 

result of developmental 

processes, since in their 

growth process some 

structures repeat regularly. 

(Mandelbrot, 1982)



Rewriting

 Define complex objects by 

successively replacing parts of 

a simple object using a set of 

rewriting rules or productions. 

 Example: Graphical object 

defined in terms of rewriting 

rules - Snowflake curve

 Construction: recursively 

replacing open polygons
First four orders of the 

Koch Curve



Rewriting Systems on Character Strings

 The most extensively studied rewriting systems 
operate on character strings (Late 50s, 
Chomsky`s work on formal grammars)

 Later applications to Computer and formal 
Languges (BNF form)

 A. Lindenmayer (1968) new type of string-
rewriting mechanism (L-systems). 

 In L-systems productions are applied in parallel 
Reflects Biological motivation of L-systems



Types of  L-systems

 Context-free: production rules refer only to an 
individual symbol

 Context-sensitive: the production rules apply 
to a particular symbol only if the symbol has 
certain neighbours 

 Deterministic: If there is exactly one 
production for each symbol, 

 Stochastic: If there are several, and each is 
chosen with a certain probability during each 
iteration



D0L-systems

 Simplest class of L-systems, 

deterministic and context free.

 Example: 

 Alphabet = {a,b}

 Rules =    {a → ab, b → a}

 Axiom:    b
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a b a a b a b a

Example of a derivation in a 

DOL-System

Syntax of a production rule:

Initiator → Generator



Graphic Interpretation

 L-systems were conceived as a formal theory of 

development. Geometric aspects were not considered

 Later, geometrical interpretations were proposed. Tool 

for fractal and plant modelling

 Graphic Interpretation of strings, based on turtle 

geometry (Prusinkiewicz et al, 89). State of the turtle: (x, y, α)

 (x, y):  Cartesian coordinates, turtle position

 α: angle (heading) direction in which the turtle is facing

 Given the step size d and the angle increment δ, the 

turtle can respond to the commands represented by the 

following symbols: 



Turtle Interpretation of  Strings

F Move forward a step of length d. The state of 

the turtle changes to (x',y',α), where x'= x + d cos(α)

and y'= y + d sin(α). A line segment between points 

(x,y) and (x',y') is drawn

f Move forward a step of length d without drawing a line. 

The state of the turtle changes as above 

+ Turn left by angle δ. The next state of the turtle is      

(x,y, α + δ)

- Turn left by angle δ. The next state of the turtle is

(x, y, α -b)



Turtle Interpretation of  Strings

w: F+F+F+F

p: F →F+F-F-FF+F+F-F

Angle (δ) = 90º

n= 0                       n = 1                           n = 2

Quadratic 

Koch island



Bracketed L-systems

 To represent branching structures, L-systems 

alphabet is extended with two new symbols: 

[, ], to delimit a branch. They are interpreted 

as follows:
[ Push the current state of the turtle onto a pushdown 

stack. 

] Pop a state from the stack and make it the current state 

of the turtle. No line is drawn, in general the position of 

the turtle changes



w: F

p: F → F[-F]F[+F][F]

Angle (δ) = 60º

n = 1 - 5

Turtle Interpretation of   Bracketed Strings



Modeling in Three Dimensions

 Turtle interpretation of strings can be extended to 3D

 Represent the current orientation of the turtle in spave by 

3 vectors:   H, L, U, indicating turtle’s Heading, the 

direction to the Left, and, the direction to the Right. 

 3 rotation matrices: RU, RL, and RH and a fixed angle δ

 The following symbols control turtle orientation in space:

 +, - :  Turn left and right, using matrix RU(δ)

 &, ^ : Pitch down and up, using matrix RL(δ)

 \, / :   Roll left and right, using matrix RH(δ)

 | : Turning around, using matrix RU(180º)



3D L-Systems



3D Bracketed L-Systems



Generative Encodings for Evolutionary 

Algorithms

 EAs has been applied to design 
problems. Past work has typically 
used a direct encoding of the 
solution

 Alternative: Generative encoding, 
i.e. an encoding that specifies 
how to construct the genotype

 Greater scalability through self-
similar and hierarchical structure 
and reuse of parts

 Closer to Natural DNA encoding



Examples of  Generative Encoding for 

EAs

 Biomorphs, The Blind Watchmaker (R. Dawkins)

 Graph encoding for animated 3D creatures (K. Sims)

 L-Systems: plant-like structures, architectural floor 
design, tables, locomoting robots  (C.Jacob, G. Ochoa, 
G. Hornby & J. Pollack, and others)

 Cellular automata rules to produce 2D shapes (H. de 
Garis)

 Context rules to produce 2D tiles (P. Bentley and S. 
Kumar)

 Cellular encoding for artificial neural networks (F. Gruau)

 Graph generating grammar for artificial neural networks 
(H. Kitano)



Evolving Plant-like Structures

 Alife system for simulating the evolution of 

artificial plants 

 Genotype: single ruled bracketed D0L-systems. 

 L-system: w: F, p: F → F[-F]F[+F][F]

 Chromosome: F[-F]F[+F][F]

 Phenotype: 2D branching structures, resulting 

from derivation and graphic interpretation of L-

systems

 Genetic Operators: Recombination and mutation 

operators that preserve the syntactic structure of 

rules



Recombination

Parents Offspring

F[-FF]+[FFF]-FF[-F-F] F[+F]+[-F-F]-FF[+F][-F][F] F[-FF]+[FFF]-FF[+F] F[+F]+[-F-F]-FF[-F-F][-F][F]



Mutation

Symbol 

Mutation

Block 

Mutation

F[+F]+[+F-F-F]-FF[-F-F]

F[+F]+[+F-F-F]-F[-F][-F-F]

FF[+FF][-F+F][FFF]F

FF[+FF][-F+F][-F]F



Evolving Plant-like Structures

 Selection

 Automated: fitness Function inspired by evolutionary 

hypothesis concerning the factors that have had the 

greatest effect on plant evolution.

 Interactive:  allowing the user to direct evolution towards 

preferred phenotypes 

 It is difficult of  automatically measuring the 

aesthetic visual success of simulated objects or 

images. In most previous work the fitness is 

provided through visual inspection by a human



Automated Selection

 Hypotheses about plant evolution (K.Niklas, 1985):
 Plants with branching patterns that gather the most light can be 

predicted to be the most successful (photosynthesis).

 Evolution of plants was driven by the need to reconcile the ability to 

support vertical branching structures

 Analytic procedure, components: 

 (a) phototropism (growth movement of plants in response to 

stimulus of light), 

 (b) bilateral symmetry, 

 (c) proportion of branching points.



Results

Considering 

phototropism, and 

symmetry

Considering 

phototropism, 

symmetry and 

branching points

Considering symmetry only

Considering 

branching points 

only

Considering 

phototropism only



Obtained by a fitness function 

considering symmetry only. 

And interactively mutating and 

recombining organisms

Sea Stars and Urchins



Some others unexpected figures!

Animals

Stars

Rockets

Candlestick



Developmental rules for Neural 

Networks - 1

Firstly, biological neural networks: 

there is simply not enough information in all our  DNA to 

specify all the architecture, the connections  within our 

nervous systems.

So DNA (... with other factors ...) must provide a 

developmental 'recipe' which in some sense (partially) 

determines nervous system structure -- and hence contributes 

to our behaviour.



Developmental rules for Neural 

Networks - 2
Secondly, artificial neural networks (ANNs): 

we build robots or software agents with ANNs  which act as their 

nervous system or control system

Alternatives: (1) Design, (2) Evolve ANN architecture. 

Evolving: (2.1) Direct encoding,  (2.2) Generative encoding

Early References: Frederick Gruau, and Hiroaki Kitano.

Gruau invented 'Cellular Encoding', with similarities to L-

Systems, and used this for evolutionary robotics.  

Kitano invented a 'Graph Generating Grammar‘.: A Graph L-

System that generates not a 'tree', but a connectivity matrix for a 

network



Generative Representations for Design 

Automation 
 Dynamical & Evolutionary 

Machine Organization (DEMO). 

Brandeis University, Boston, USA

Evolved Tables: Fitness function 

rewarded structures for maximizing: 

height; surface area; stability/volume; 

and minimizing the number of cubes.

http://www.demo.cs.brandeis.edu/index.html


Hierarchically Regular Locomoting Robots 

Evolve both the morphology and the controllers for 

different robots. Generative encoding based on L-

systems 

Scorpion Serpent

A constructed 

genobot 



Grammar Based Representation  of  

Transmission Towers

Real world towers 

translated into the 

grammar language

Evolutionary 

approach was 

applied to the 

Inverse Problem

i.e. The identification 

of a grammar that 

generates a 

predetermined tower



Conclusions (based on Hornby et. al)

 Main criticism for the use of EAs for design: it is doubtful 

whether it will reach the high complexities necessary for 

real applications

 Since the search space grows exponentially with the size 

of the problem, EAs with direct encoding will not scale to 

large designs

 Generative encoding (i.e. a grammatical encoding that 

specifies how to construct a design) can achieve greater 

scalability through self-similar and hierarchical structure 

 Trough reuse of parts generative encoding is a more 

compact encoding of a solution
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