
Morphogenesis, 

Lindenmayer Systems and 

Generative Encodings

Gabriela Ochoa

http://www.ldc.usb.ve/~gabro/



Content

 Morphogenesis
 Biology 

 Alife

 Lindenmayer Systems
 Self-similarity, Rewriting

 D0L-systems

 Graphic Interpretation

 Generative or rule-based 
encodings for Evolutionary 
Algorithms



Morphogenesis in Biology

 One of the major outstanding 
problems in the biological 
sciences 

 Fundamental question of 
how biological form and 
structure are generated

 Biological form at many 
levels, from individual cells, 
through the formation 
tissues, to the assembly of 
organs and whole 
organisms.



Morphogenesis in Alife

 Central Question in Morphogenesis: How the 
information coded in linear DNA molecules 
becomes translated into a three-dimensional form?

 Going from Genotype to Phenotype

 General assumption: the DNA does not specify 'as  
some kind of description' or ‘blueprint’ the final 
form of the body. More like 'a recipe' for baking a 
cake

 A typical Alife approach is to look at possible, very 
general, ways to generate complex forms from 
relatively simple rules -- often very abstract



L-Systems

 A model of morphogenesis, based on 

formal grammars (set of rules and 

symbols)

 Introduced in 1968 by the Swedish 

biologist A. Lindenmayer 

 Originally designed as a formal 

description of the development of 

simple multi-cellular organisms 

 Later on, extended to describe higher 

plants and complex branching 

structures. 



Self-Similarity

“When a piece of a shape is 

geometrically similar to the whole, 

both the shape and the cascade 

that generate it are called self-

similar”  (Mandelbrot, 1982)

The recursive nature of the L-system rules 

leads to self-similarity and thereby fractal-

like forms are easy to describe with an L-

system. 



Self-Similarity in 

Fractals

• Exact

• Example Koch snowflake 

curve

• Starts with a single line 

segment

• On each iteration replace 

each segment by

• As one successively 

zooms in the resulting 

shape is exactly the same 



Self-similarity in 

Nature

• Approximate

• Only occurs over a few 

discrete  scales (3 in this 

Fern)

• Self-similarity in plants is a 

result of developmental 

processes, since in their 

growth process some 

structures repeat regularly. 

(Mandelbrot, 1982)



Rewriting

 Define complex objects by 

successively replacing parts of 

a simple object using a set of 

rewriting rules or productions. 

 Example: Graphical object 

defined in terms of rewriting 

rules - Snowflake curve

 Construction: recursively 

replacing open polygons
First four orders of the 

Koch Curve



Rewriting Systems on Character Strings

 The most extensively studied rewriting systems 
operate on character strings (Late 50s, 
Chomsky`s work on formal grammars)

 Later applications to Computer and formal 
Languges (BNF form)

 A. Lindenmayer (1968) new type of string-
rewriting mechanism (L-systems). 

 In L-systems productions are applied in parallel 
Reflects Biological motivation of L-systems



Types of  L-systems

 Context-free: production rules refer only to an 
individual symbol

 Context-sensitive: the production rules apply 
to a particular symbol only if the symbol has 
certain neighbours 

 Deterministic: If there is exactly one 
production for each symbol, 

 Stochastic: If there are several, and each is 
chosen with a certain probability during each 
iteration



D0L-systems

 Simplest class of L-systems, 

deterministic and context free.

 Example: 

 Alphabet = {a,b}

 Rules =    {a → ab, b → a}

 Axiom:    b

b
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a b a a b a b a

Example of a derivation in a 

DOL-System

Syntax of a production rule:

Initiator → Generator



Graphic Interpretation

 L-systems were conceived as a formal theory of 

development. Geometric aspects were not considered

 Later, geometrical interpretations were proposed. Tool 

for fractal and plant modelling

 Graphic Interpretation of strings, based on turtle 

geometry (Prusinkiewicz et al, 89). State of the turtle: (x, y, α)

 (x, y):  Cartesian coordinates, turtle position

 α: angle (heading) direction in which the turtle is facing

 Given the step size d and the angle increment δ, the 

turtle can respond to the commands represented by the 

following symbols: 



Turtle Interpretation of  Strings

F Move forward a step of length d. The state of 

the turtle changes to (x',y',α), where x'= x + d cos(α)

and y'= y + d sin(α). A line segment between points 

(x,y) and (x',y') is drawn

f Move forward a step of length d without drawing a line. 

The state of the turtle changes as above 

+ Turn left by angle δ. The next state of the turtle is      

(x,y, α + δ)

- Turn left by angle δ. The next state of the turtle is

(x, y, α -b)



Turtle Interpretation of  Strings

w: F+F+F+F

p: F →F+F-F-FF+F+F-F

Angle (δ) = 90º

n= 0                       n = 1                           n = 2

Quadratic 

Koch island



Bracketed L-systems

 To represent branching structures, L-systems 

alphabet is extended with two new symbols: 

[, ], to delimit a branch. They are interpreted 

as follows:
[ Push the current state of the turtle onto a pushdown 

stack. 

] Pop a state from the stack and make it the current state 

of the turtle. No line is drawn, in general the position of 

the turtle changes



w: F

p: F → F[-F]F[+F][F]

Angle (δ) = 60º

n = 1 - 5

Turtle Interpretation of   Bracketed Strings



Modeling in Three Dimensions

 Turtle interpretation of strings can be extended to 3D

 Represent the current orientation of the turtle in spave by 

3 vectors:   H, L, U, indicating turtle’s Heading, the 

direction to the Left, and, the direction to the Right. 

 3 rotation matrices: RU, RL, and RH and a fixed angle δ

 The following symbols control turtle orientation in space:

 +, - :  Turn left and right, using matrix RU(δ)

 &, ^ : Pitch down and up, using matrix RL(δ)

 \, / :   Roll left and right, using matrix RH(δ)

 | : Turning around, using matrix RU(180º)



3D L-Systems



3D Bracketed L-Systems



Generative Encodings for Evolutionary 

Algorithms

 EAs has been applied to design 
problems. Past work has typically 
used a direct encoding of the 
solution

 Alternative: Generative encoding, 
i.e. an encoding that specifies 
how to construct the genotype

 Greater scalability through self-
similar and hierarchical structure 
and reuse of parts

 Closer to Natural DNA encoding



Examples of  Generative Encoding for 

EAs

 Biomorphs, The Blind Watchmaker (R. Dawkins)

 Graph encoding for animated 3D creatures (K. Sims)

 L-Systems: plant-like structures, architectural floor 
design, tables, locomoting robots  (C.Jacob, G. Ochoa, 
G. Hornby & J. Pollack, and others)

 Cellular automata rules to produce 2D shapes (H. de 
Garis)

 Context rules to produce 2D tiles (P. Bentley and S. 
Kumar)

 Cellular encoding for artificial neural networks (F. Gruau)

 Graph generating grammar for artificial neural networks 
(H. Kitano)



Evolving Plant-like Structures

 Alife system for simulating the evolution of 

artificial plants 

 Genotype: single ruled bracketed D0L-systems. 

 L-system: w: F, p: F → F[-F]F[+F][F]

 Chromosome: F[-F]F[+F][F]

 Phenotype: 2D branching structures, resulting 

from derivation and graphic interpretation of L-

systems

 Genetic Operators: Recombination and mutation 

operators that preserve the syntactic structure of 

rules



Recombination

Parents Offspring

F[-FF]+[FFF]-FF[-F-F] F[+F]+[-F-F]-FF[+F][-F][F] F[-FF]+[FFF]-FF[+F] F[+F]+[-F-F]-FF[-F-F][-F][F]



Mutation

Symbol 

Mutation

Block 

Mutation

F[+F]+[+F-F-F]-FF[-F-F]

F[+F]+[+F-F-F]-F[-F][-F-F]

FF[+FF][-F+F][FFF]F

FF[+FF][-F+F][-F]F



Evolving Plant-like Structures

 Selection

 Automated: fitness Function inspired by evolutionary 

hypothesis concerning the factors that have had the 

greatest effect on plant evolution.

 Interactive:  allowing the user to direct evolution towards 

preferred phenotypes 

 It is difficult of  automatically measuring the 

aesthetic visual success of simulated objects or 

images. In most previous work the fitness is 

provided through visual inspection by a human



Automated Selection

 Hypotheses about plant evolution (K.Niklas, 1985):
 Plants with branching patterns that gather the most light can be 

predicted to be the most successful (photosynthesis).

 Evolution of plants was driven by the need to reconcile the ability to 

support vertical branching structures

 Analytic procedure, components: 

 (a) phototropism (growth movement of plants in response to 

stimulus of light), 

 (b) bilateral symmetry, 

 (c) proportion of branching points.



Results

Considering 

phototropism, and 

symmetry

Considering 

phototropism, 

symmetry and 

branching points

Considering symmetry only

Considering 

branching points 

only

Considering 

phototropism only



Obtained by a fitness function 

considering symmetry only. 

And interactively mutating and 

recombining organisms

Sea Stars and Urchins



Some others unexpected figures!

Animals

Stars

Rockets

Candlestick



Developmental rules for Neural 

Networks - 1

Firstly, biological neural networks: 

there is simply not enough information in all our  DNA to 

specify all the architecture, the connections  within our 

nervous systems.

So DNA (... with other factors ...) must provide a 

developmental 'recipe' which in some sense (partially) 

determines nervous system structure -- and hence contributes 

to our behaviour.



Developmental rules for Neural 

Networks - 2
Secondly, artificial neural networks (ANNs): 

we build robots or software agents with ANNs  which act as their 

nervous system or control system

Alternatives: (1) Design, (2) Evolve ANN architecture. 

Evolving: (2.1) Direct encoding,  (2.2) Generative encoding

Early References: Frederick Gruau, and Hiroaki Kitano.

Gruau invented 'Cellular Encoding', with similarities to L-

Systems, and used this for evolutionary robotics.  

Kitano invented a 'Graph Generating Grammar‘.: A Graph L-

System that generates not a 'tree', but a connectivity matrix for a 

network



Generative Representations for Design 

Automation 
 Dynamical & Evolutionary 

Machine Organization (DEMO). 

Brandeis University, Boston, USA

Evolved Tables: Fitness function 

rewarded structures for maximizing: 

height; surface area; stability/volume; 

and minimizing the number of cubes.

http://www.demo.cs.brandeis.edu/index.html


Hierarchically Regular Locomoting Robots 

Evolve both the morphology and the controllers for 

different robots. Generative encoding based on L-

systems 

Scorpion Serpent

A constructed 

genobot 



Grammar Based Representation  of  

Transmission Towers

Real world towers 

translated into the 

grammar language

Evolutionary 

approach was 

applied to the 

Inverse Problem

i.e. The identification 

of a grammar that 

generates a 

predetermined tower



Conclusions (based on Hornby et. al)

 Main criticism for the use of EAs for design: it is doubtful 

whether it will reach the high complexities necessary for 

real applications

 Since the search space grows exponentially with the size 

of the problem, EAs with direct encoding will not scale to 

large designs

 Generative encoding (i.e. a grammatical encoding that 

specifies how to construct a design) can achieve greater 

scalability through self-similar and hierarchical structure 

 Trough reuse of parts generative encoding is a more 

compact encoding of a solution
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