
Constructive Solid Geometry

and

Procedural Modeling

Stelian Coros

Somewhat unrelated

Schedule for presentations

February 3 5 10 12 17 19 24 26

March 3 5 10 12 17 19 24 26 30

April 2 7 9 14 16 21 23 28 30

Send me:

ASAP: 3 choices for dates + approximate topic (scheduling)

1-2 weeks before your presentation: list of papers you plan to talk about

Day before each presentation: 3 questions for one of the papers that will be discussed

Previous Lecture: Solid Modeling

• Represent solid interiors of objects

– Voxels

– Octrees

– Tetrahedra

– Distance Fields

www.volumegraphics.com

Previous Lecture: From Surfaces to Voxels

• Ray casting

– Trace a ray from each voxel center

– Count intersections

• Odd: inside

• Even: outside

 · · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Real-life meshes

Real-life meshes

Real-life meshes

Alec Jacobson 9

Real-life meshes: output of human

creativity, for better or worse

Robust Inside-Outside Segmentation

using Generalized Winding Numbers

Alec Jacobson

Ladislav Kavan

Olga Sorkine-

Hornung

ETH Zurich

University of Pennsylvania

ETH Zurich

Robust Inside-Outside Segmentation using

Generalized Winding Numbers

• Main challenge – determine which points are inside

of a shape, which are outside

If shape is watertight, winding number is

perfect measure of inside

• Winding number for a point in space:

– how many times does the curve wind about the point

 Or, equivalently

– Signed length of the curve projected on unit circle

about the point

If shape is watertight, winding number is

perfect measure of inside

• Winding number for a point in space:

– how many times does the curve wind about the point

 Or, equivalently

– Signed length of the curve projected on unit circle

about the point

Robust for: arbitrary topologies, self-intersections,

overlaps, and multiple connected components

• Use orientation of curve to treat insideness as

integer quantity

Winding number discretization (2D)

• Integral becomes sum of signed angle subtended by

each edge

Winding number discretization (3D)

• Solid angle subtended by each triangle

From nice meshes to real-world meshes

• Winding number no longer an integer value

Gracefully tends toward perfect indicator as shape tends towards watertight

What if shape is self-intersecting? Non-

manifold?

Normally smooth, jumps by ±1 across

input facets

Sharp discontinuity across input eases precise

segmentation

Winding number degrades gracefully

Winding number vs ray casting

1 ray

Winding number vs ray casting

3 rays

Winding number vs ray casting

7 rays

Winding number vs ray casting

15 rays

Winding number vs ray casting

31 rays

Winding number vs ray casting

63 rays

Winding number vs ray casting

127 rays

Winding number vs ray casting

511 rays

Winding number vs ray casting

2047 rays

Robust Inside-Outside Segmentation

using Generalized Winding Numbers

Alec Jacobson

Ladislav Kavan

Olga Sorkine-

Hornung

ETH Zurich

University of Pennsylvania

ETH Zurich

Geometric Representations

• Languages for describing shape

– Boundary representations

• Polygonal meshes

• Subdivision surfaces

• Implicit surfaces

– Volumetric models

– Parametric models

– Procedural/generative models

Lower Level

Higher Level

• A way of building complex objects from simple

primitives using Boolean operations

Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG)

• Represent solid object as hierarchy of

Boolean operations

• The Boolean operations are not evaluated

• Stored in a Binary Tree

 data structure

CSG Data Structure

intersect

union

union

subtract

Leaves: CSG Primitives

intersect

union

union

subtract

• Simple shapes

– Cuboids

– Cylinders

– Prisms

– Pyramids

– Spheres

– Cones

• Extrusions

• Surfaces of

revolution

• Swept surfaces

Internal Nodes

• Boolean Operations

– Union

– Intersection

– Difference

• Rigid Transformations

– Scale

– Translation

– Rotation

– Shear

intersect

union

union

subtract

Root: The Final Object

Given overlapping shapes A and B:

 Union Intersection Subtraction

Booleans for Solids

How Can We Implement Boolean Operations?

• Use voxels/octrees/ADFs

– We can convert from b-reps to voxels/DF and back

– Process objects voxel by voxel

– Issues?

How Can We Implement Boolean Operations?

• Directly: the hard way ...

– You will not be asked to do this

• Commercial libraries/CAD tools

– e.g., Parasolid, SolidWorks

• Open source libraries

– e.g., CGAL, OpenSCAD

• Software for creating solid

3D CAD models

• Not an interactive modeler

– Very basic UI

• A 3D-compiler

– Geometry written as a script

– Executed using CGAL/OpenCSG

– Rendered with OpenGL

• Available for Linux/UNIX,

Windows, Mac OS X

– http://www.openscad.org

OpenSCAD

http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/

OpenSCAD

• Interface

– 3 panels

• Script

• View

• Info

• Compile (F5)

– Design->Compile

• Show Axes (Ctrl+2)

OpenSCAD CheatSheet

2D Primitives

• Circle
– circle(5);
– circle(r=5);

• Square
– square(5);
– square([4,8]);

• Polygon
– Need to specify points and paths, in this format:

polygon([points],[paths]);
• e.g., polygon([[0,0],[5,0],[5,5],[0,5]]
, [[0,1,2,3]]);

• path is an optional parameter, assume in order if
omitted

• Notes:
– Remember the “;”
– Thickness is 1mm
– Use “[“ and “]” to pass multiple values

2D to 3D Extrusion

• Linear extrusion

– Extrudes a 2D shape along the Z axis
linear_extrude(height = 10, center = true, convexity =

10, twist = -100) translate([2, 0, 0]) circle(r = 1);

• Rotational extrusion

– Revolves a 2D shape around the Z axis
rotate_extrude($fn=200)

polygon(points=[[0,0],[2,1],[1,2],[1,3],[3,4],[0,5]]);

3D Primitives

• Sphere

– sphere(5);

sphere(r=5);

• Cube

– cube(5);

– cube([4,8,16]);

• Cylinder

– cylinder(20,10,5);

cylinder(h = 20, r1

= 10, r2 = 5);

– cylinder(h=20,r=10);

Transformations

• Translate

– e.g., translate([10,0,0])
sphere(5); // translate
along x axis

• Rotate

• Scale

• Order dependent
– Color(“yellow”)
 translate([0,0,10])
 rotate([45,0,0])
 cylinder([20,10,0]);
– Color(“green”)
rotate([45,0,0])
translate([0,0,10])
cylinder([20,10,0]);

CSG

• Union

• Intersection

• Difference

• Example:

 union()

 {

 translate([0,-25,-25]) cylinder(50,10,10);

 rotate([90,0,0]) cylinder(50,8,8);

 }

Module

• Procedures/Functions

module leaves() { cylinder(20,5,0); }

module box() { cube([5,10,15]); }

module tree() {

 leaves();

 scale([0.5,0.5,0.5]) translate([-2.5,-5,-

 15]) box();

 }

tree();

Module

• Parameters

 module box(w,l,h,tx,ty,tz){

 translate([tx,ty,tz])

 cube([w,l,h]);

 }

 box(5,10,15,10,0,5);

• Default values

module box2(w=5,l=10,h=20){

 echo("w=", w, " l=", l, " h=", h);

 cube([w,l,h]);

}

box2();

Loops

for (loop_variable_name = range or vector) {

 …..

 }

Loops

Variables

• Assign() statement

– In openscad, one can only assign variables at

file top-level or module top-level

– If you need it inside the for loop, you need

to use assign(), e.g,:

Conditionals

• If/else/else if

– Syntax similar to C/C++

Useful Functions

• mirror(): mirror the element on a plane
through origin, argument is the normal vector
of the plane, e.g., mirror([0,1,0]);

• hull(); create a convex hull from all objects
that are inside, e.g., hull() {#
translate([0,70,0]) circle(10); # circle(30); }

• minkowski(); takes one 2D shape and traces it
around the edge of another 2D shape, e.g.,
minkowski() { cube([30,30,5]); # sphere(5);}

• Constructive Solid Geometry (CSG)

– Parametric models from simple primitives

• Procedural Modeling

The Plan For Today

• Constructive Solid Geometry (CSG)

– Parametric models from simple primitives

• Procedural Modeling

The Plan For Today

Procedural Modeling

• Goal:

– Describe 3D models algorithmically

• Best for models resulting from ...

– Repeating or similar structures

– Random processes

• Advantages:

– Automatic generation

– Concise representation

– Parameterized classes of models

Formal Grammars and Languages

• A finite set of nonterminal symbols: {S, A, B}

• A finite set of terminal symbols: {a, b}

• A finite set of production rules: S AB; A aBA

• A start symbol: S

• Generates a set of finite-length sequences of

symbols by recursively applying production rules

starting with S

L-systems (Lindenmayer systems)

• A model of morphogenesis, based on

formal grammars (set of rules and

symbols)

• Introduced in 1968 by the Swedish

biologist A. Lindenmayer

• Originally designed as a formal

description of the development of

simple multi-cellular organisms

• Later on, extended to describe

higher plants and complex branching

structures

L-system Example

• nonterminals : 0, 1

• terminals : [,]

• start : 0

• rules : (1 → 11), (0 → 1[0]0)

start: 0

1st recursion: 1[0]0

2nd recursion: 11[1[0]0]1[0]0

3rd recursion: 1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0

How does it work?

L-system Example

• Visual representation: turtle graphics

– 0: draw a line segment ending in a leaf

– 1: draw a line segment

– [: push position and angle, turn left 45 degrees

–]: pop position and angle, turn right 45 degrees

L-system Example 2: Fractal Plant

• nonterminals : X, F

• terminals : + - []

• start : X

• rules : (X → F-[[X]+X]+F[+FX]-X), (F → FF)

L-Systems Examples

• Tree examples

L-Systems Examples

Types of L-Systems

• Deterministic: If there is exactly one production for
each symbol

 0 → 1[0]0

• Stochastic: If there are several, and each is chosen
with a certain probability during each iteration

 0 (0.5) → 1[0]0

 0 (0.5) → 010

Types of L-Systems

• Context-free: production rules refer only to an
individual symbol

• Context-sensitive: the production rules apply to a
particular symbol only if the symbol has certain
neighbours

Types of L-Systems

• Nonparametric grammars: no parameters
associated with symbols

• Parametric grammars: symbols can have
parameters

– Parameters used in conditional rules
– Production rules modify parameters

– A(x,y) → A(1, y+1)B(x-2,3)

Applications: Plant Modeling

• Algorithmic Botany @ the University of Calgary

– Covers many variants of L-Systems, formal

derivations, and exhaustive coverage of different

plant types.

– http://algorithmicbotany.org/papers

– http://algorithmicbotany.org/virtual_laboratory/

http://algorithmicbotany.org/papers
http://algorithmicbotany.org/virtual_laboratory/
http://algorithmicbotany.org/virtual_laboratory/

TreeSketch: Interactive Tree Modeling

http://vimeo.com/68195050

Procedural Modeling of Buildings

Procedural Modeling of Buildings / Müller et al, Siggraph 2006

• Pompeii

Procedural Modeling of Buildings

Procedural Modeling of Buildings / Müller et al, Siggraph 2006

CityEngine

http://www.esri.com/software/cityengine/

Furniture Design

Input:

3D

model

Output:

Fabricatable

Parts and

Connectors

Converting 3D Furniture Models to Fabricable Parts and Connectors, Lau et al., Siggraph 2011

3D

model

Separate parts

and

connectors

Formal

grammar

Pre-defined formal grammar used to analyze

structure of 3D models

Approach

Example 2D Cabinet Corresponding Graph Positioning of Parts

Example: 2D Cabinet

Production Rule 2

Production Rule 1

Examples of Production Rules

Production Rule 4

Production Rule 6

Production Rule 8

Examples of Production Rules

Sequence of Production Rules

All Production Rules

: Set of Production

Rules

The language specifies a directed graph which represents

parts and connectors

Non-terminal

Symbols

- Collection of Parts

Terminal Symbols

- Separate Parts

: Start Symbol

Formal Grammar for 2D Cabinets

Overview of algorithm

Overview of algorithm

Apply production rules in reverse to S, and then

forward again to get proper connectivity

Multiple valid

options

Grammar-based Furniture Design

Procedural Modelling

That’s All For Today

