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Plant Growth Modelling: a multidisciplinary subject
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A model combining two approaches

Morphological models Process-based models

=> simulation of 3D development =>yield prediction as a function

of environmental conditions
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Functional-structural models




A familly of Functional-Structural Models of plant growth
initiated by P. de Reffye
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A « Growth Cycle » based on plant organogenesis
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Flowchart for plant growth and plant development
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A formal grammar for plant development (L-system)

@® Alphabet = {metamers, buds}

(according to their physiological ages = morphogenetic characteristics)

® Production Rules : at each growth cycle, each
bud in the structure gives a new architectural 9 — » = E
growth unit. s

® Factorization of the growth grammar
factorization of the plant into « substructures »
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Computation time proportional to
plant chronological age and not
to the number of organs ! 7




A generic equation to describe sources-sinks
dynamics along plant growth
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GreenScilab '%Gsf
www.greenscilab.org ] ¢

A free tool implementing the GreenlLab
model in the Scilab environment, for
teaching, research and applications.

e The mathematical formalism of the model
allows an efficient use of Scilab’s
computational capacities

o User-friendly interface and visualization
outputs



Features of GreenScilab: Simulation of Plant Growth In
Different Environmental Conditions

Maize sunflower inflorescence

Gingko



Features of GreenScilab: Simulation Efficiency

& Substructure instantiations El\
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& C codes are used in some parts of GreenScilab thanks to C interface
supplied by Scilab in order to speed up some operations.



Estimation of model parameters from experimental data

& Plant = Dynamic System Xn+1 =F (Xn ,P,U n)
& State variables an vector of biomass production

& Input Variables U = environnement (light, temperature, soil water
content)

& Parameters P

& Observations Y = G(XN , P)

& Trace back organogenesis dynamics from static data collected on
plant architecture (numbers of organs produced, modelling of bud
functioning)

& Trace back source-sink dynamics (biomass production and
allocation) from static data on organ masses.

» Esimate P: P = ArgMin | Y#¥erme —ymeq(p) |

Generalized Least-Squares solved with Scilab function Isgrsolve 12



Estimation of model parameters from experimental data

Example: maize at different growth stages GC 12, 21, 30 (Guo, Ma 2006)
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Features of GreenScilab: Optimization and Control

E Genetic improvement: find the best set of parameters

(implementation of heuristics in GSL: particle swarm optimization,
simulated annealing, genetic algorithms)

B Optimal Control of Agricultural Practices
Ex: Water supply optimization for Sunflower (Wu,2004),
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The Future ...

E Take advantage of the new possibilities of Scilab for HPC to
simulate plant populations at field or landscape levels
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(Image: Jaeger, 2009)



Thank you!

www.dgreenscilab.org




